Holey Schrr Oder Designs of Type 2 N U 1

نویسندگان

  • Ruizhong Wei
  • Hantao Zhang
چکیده

A holey Schrr oder design of type h n 1 1 h n 2 2 h n k k (HSD(h n 1 1 h n 2 2 h n k k)) is equivalent to a frame idempotent Schrr oder quasigroup (FISQ(h n 1 1 h n 2 2 h n k k)) of order m with n i missing subquasigroups (holes) of order h i ; 1 i k, which are disjoint and spanning, that is , P 1ik n i h i = m. In this paper, we rst consider the existence of HSD(2 n u 1) for 1 u 4 and show that these HSDs exist if and only if n u+1 with the exception of (n; u) 2 f(2; 1); (3; 1); (3; 2)g. Then we investigate the existence of HSD(2 n u 1) for general u and prove that there exists an HSD(2 n u 1) for u 16 and n 5u=4] + 14.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Existence of Schr oder

A holey Schrr oder design of type h n 1

متن کامل

Holey Schröder designs of type 4n u1

A holey Schröder design of type h1 1 h n2 2 . . . h nk k (HSD(h n1 1 h n2 2 . . . h nk k )) is equivalent to a frame idempotent Schröder quasigroup (FISQ(h1 1 h n2 2 . . . hk k )) of order n with ni missing subquasigroups (holes) of order hi, 1 ≤ i ≤ k, which are disjoint and spanning, that is, ∑1≤i≤k nihi = n. In this paper, we consider the existence of HSD(4u) for 0 ≤ u ≤ 36 and show that the...

متن کامل

Bijective Recurrences concerning Schrr Oder Paths

Consider lattice paths in Z 2 with three step types: the up diagonal (1; 1), the down diagonal (1; ?1), and the double horizontal (2; 0). For n 1, let S n denote the set of such paths running from (0; 0) to (2n; 0) and remaining strictly above the x-axis except initially and terminally. It is well known that the cardinalities, r n = jS n j, are the large Schrr oder numbers. We use lattice paths...

متن کامل

A Classic Proof of a Recurrence for a Very Classical Sequence

Richard Stanley St96] has recently narrated the fascinating story of how the classical Schrr oder Sch1870] numbers s(n) are even more classical than has been believed before. They (at least s(10) = 103049) have been known to Hipparchus (190-127 B.C.). Stanley recalled the three-term linear recurrence ((Co64]; Co74], p. 57) (1) 3(2n ? 1)s(n) = (n + 1)s(n + 1) + (n ? 2)s(n ? 1) (n 2); s(1) = s(2)...

متن کامل

Existence of HSOLSSOMs of type 4nu1

This paper investigates the existence of holey self-orthogonal Latin squares with a symmetric orthogonal mate of type 4u (briefly HSOLSSOM(4u)). For u > 0, the necessary conditions for existence of such an HSOLSSOM are (1) u must be even, and (2) u ≤ (4n−4)/3, and either (n, u) = (4, 4) or n ≥ 5. We show that these conditions are sufficient except possibly (1) for 36 cases with n ≤ 37, (2) for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007